Posts

Introduction to Biotechnology

  Introduction to Biotechnology The  Chambers Science and Technology Dictionary  defines biotechnology as ‘the use of organisms or their components in industrial or commercial processes, which can be aided by the techniques of genetic manipulation in developing e.g. novel plants for agriculture or industry.’ Despite the inclusiveness of this definition, the biotechnology sector is still often seen as largely medical or phar-maceutical in nature, particularly amongst the general public. While to some extent the huge research budgets of the drug companies and the widespread familiarity of their products makes this understandable, it does distort the full picture and somewhat unfairly so. However, while therapeutic instruments form, in many respects, the ‘acceptable’ face of biotechnology, elsewhere the science is all too frequently linked with unnatural interference. While the agricultural, industrial and environmental applications of biotechnology are potentially very great, the shadow

Role of Environmental Biotechnology

  The Role of Environmental Biotechnology While pharmaceutical biotechnology represents the glamorous end of the market, environmental applications are decidedly more in the Cinderella mould. The reasons for this are fairly obvious. The prospect of a cure for the many diseases and conditions currently promised by gene therapy and other biotech-oriented medical miracles can potentially touch us all. Our lives may, quite literally, be changed. Environmental biotechnology, by contrast, deals with far less apparently dramatic topics and, though their importance, albeit different, may be every bit as great, their direct relevance is far less readily appreciated by the bulk of the population. Cleaning up contamination and dealing rationally with wastes is, of course, in everybody’s best interests, but for most people, this is simply addressing a problem which they would rather had not existed in the first place. Even for industry, though the benefits may be noticeable on the balance sheet, t

Scope for Use of Environmental Biotechnology

Image
  The Scope for Use There are three key points for environmental biotechnology interventions, namely in the manufacturing process, waste management or pollution control, as shown in Figure 1.1.  Accordingly, the range of businesses to which environmental biotechnology has potential relevance is almost limitless. One area where this is most apparent is with regard to waste. All commercial operations generate waste of one form or another and for many, a proportion of what is produced is biodegradable. With disposal costs rising steadily across the world, dealing with refuse constitutes an increasingly high contribution to overheads. Thus, there is a clear incentive for all businesses to identify potentially cost-cutting approaches to waste and  employ them where possible.  Changes in legislation throughout Europe, the US and elsewhere, have combined to drive these issues higher up the political agenda and biological methods of waste treatment have gained far greater acceptance as a resul

Market for Environmental Biotechnology

  The Market for Environmental Biotechnology The UK’s Department of Trade and Industry estimated that 15 – 20% of the global environmental market in 2001 was biotech-based, which amounted to about 250 – 300 billion US dollars and the industry is projected to grow by as much as ten-fold over the following five years. This expected growth is due to greater acceptance of biotechnology for clean manufacturing applications and energy production, together with increased landfill charges and legislative changes in waste management which also alter the UK financial base favourably with respect to bioremediation. Biotechnology-based methods are seen as essential to help meet European Union (EU) targets for biowaste diversion from land-fill and reductions in pollutants. Across the world the existing regulations on environmental pollution are predicted to be more rigorously enforced, with more stringent compliance standards implemented. All of this is expected to stimulate the sales of biotechnol

Modalities and local influences - Environmental Biotechnology

  Modalities and local influences Another of the key factors affecting the practical uptake of environmental biotechnology is the effect of local circumstances. Contextual sensitivity is almost certainly the single most important factor in technology selection and repre-sents a major influence on the likely penetration of biotech processes into the marketplace. Neither the nature of the biological system, nor of the application method itself, play anything like so relevant a role. This may seem somewhat unexpected at first sight, but the reasons for it are obvious on further inspection. While the character of both the specific organisms and the engineering remain essentially the same irrespective of location, external modalities of economics, legislation and custom vary on exactly this basis. Accordingly, what may make abundant sense as a biotech intervention in one region or country, may be totally unsuited to use in another. In as much as it is impossible to discount the wider global

Microbes and Metabolism

  Microbes and Metabolism So fundamental are the concepts of cell growth and metabolic capability to the whole of environmental biotechnology and especially to remediation. Metabolic pathways (Michal 1992) are interlinked to produce what can develop into an extraordinarily complicated net-work, involving several levels of control. However, they are fundamentally about the interaction of natural cycles and represent the biological element of the nat-ural geobiological cycles. These impinge on all aspects of the environment, both living and nonliving. Using the carbon cycle as an example, carbon dioxide in the atmosphere is returned by dissolution in rainwater, and also by the process of photosynthesis to produce sugars, which are eventually metabolised to liberate the carbon once more. In addition to constant recycling through metabolic pathways, carbon is also sequestered in living and nonliving components such as in trees in the relatively short term, and deep ocean systems or ancient

Immobilisation, Degradation or Monitoring of Pollutants from a Biological Origin

  The Immobilisation, Degradation or Monitoring of Pollutants from a Biological Origin Removal of a material from an environment takes one of two routes: it is either degraded or immobilised by a process which renders it biologically unavailable for degradation and so is effectively removed.  Immobilisation can be achieved by chemicals excreted by an organism or by chemicals in the neighbouring environment which trap or chelate a molecule thus making it insoluble. Since virtually all biological processes require the substrate to be dissolved in water, chelation renders the substance unavailable. In some instances this is a desirable end result and may be viewed as a form of  remediation, since it stabilises the contaminant. In other cases it is a nuisance, as digestion would be the preferable option. Such ‘unwanted’ immobilisation can be a major problem in remediation, and is a common state of affairs with aged contamination. Much research effort is being applied to find methods to rev